Stripe noise removal in high resolution satellite remote sensing images based on deep learning

نویسندگان

چکیده

å—åˆ°æˆåƒçŽ¯å¢ƒã€ç¡¬ä»¶æ¡ä»¶ç­‰å› ç´ çš„é™åˆ¶ï¼Œé«˜åˆ†è¾¨çŽ‡å«æ˜Ÿé¥æ„Ÿå½±åƒä¸Šæ™®éå­˜åœ¨æ¡å¸¦å™ªå£°çš„çŽ°è±¡ï¼Œå ¶ä¸¥é‡å½±å“äº†å½±åƒçš„è¾å°„è´¨é‡å’Œå¯ç”¨æ€§ã€‚æœ¬æ–‡é’ˆå¯¹ä¼ ç»Ÿæ¡å¸¦åŽ»é™¤æ–¹æ³•å­˜åœ¨çš„é€‚åº”æ€§å·®ã€åŽ»å™ªæ•ˆçŽ‡ä½Žã€ä¾é å ˆéªŒçŸ¥è¯†ç­‰ä¸è¶³ï¼Œæå‡ºäº†ä¸€ç§åŸºäºŽæ·±åº¦å­¦ä¹ å·ç§¯ç¥žç»ç½‘ç»œçš„æ¡å¸¦å™ªå£°åŽ»é™¤æ–¹æ³•ã€‚æœ¬æ–¹æ³•é¦–å ˆåˆ©ç”¨ä¸åŒå°ºåº¦çš„å·ç§¯å±‚è¿›è¡Œç‰¹å¾æå–ï¼Œç„¶åŽå¯¹å¤šå°ºåº¦çš„ç‰¹å¾å›¾è¿›è¡Œç‰¹å¾èžåˆå¾—åˆ°åŽ»å™ªåº•å›¾ï¼Œé€šè¿‡æ®‹å·®å­¦ä¹ çš„æ–¹æ³•åœ¨åº•å›¾ä¸Šé¢„æµ‹å­˜åœ¨çš„å™ªå£°åˆ†é‡ï¼Œæœ€åŽç”¨å™ªå£°å½±åƒå‡åŽ»æ¡å¸¦å™ªå£°åˆ†é‡å®žçŽ°å™ªå£°çš„åŽ»é™¤ã€‚ä»¥æ¨¡æ‹Ÿå’ŒçœŸå®žèŽ·å–çš„å™ªå£°å½±åƒä¸ºå®žéªŒæ•°æ®ï¼Œå°†æœ¬æ–‡æå‡ºçš„æ–¹æ³•ä¸Žä¸€äº›ç»å ¸çš„åŽ»å™ªæ–¹æ³•è¿›è¡Œå®žéªŒç»“æžœå¯¹æ¯”åˆ†æžï¼Œå®žéªŒç»“æžœè¡¨æ˜Žæœ¬æ–‡æå‡ºçš„åŸºäºŽæ·±åº¦å­¦ä¹ çš„æ¡å¸¦å™ªå£°åŽ»é™¤æ–¹æ³•èƒ½å¤Ÿåœ¨ä¿ç•™å½±åƒåœ°ç‰©ç»†èŠ‚çš„æƒ å†µä¸‹ï¼Œèƒ½ä»¥ä¼˜å¼‚çš„é€Ÿåº¦è¾¾åˆ°æœ€é«˜çš„å®šé‡æŒ‡æ ‡å’Œæœ€å¥½çš„è§†è§‰æ•ˆæžœï¼Œå 分证明了本文方法的优越性。

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stripe Noise Removal from Remote Sensing Images Based on Stationary Wavelet Transform

Fourier transform is applied to detect the direction of stripe noise before de-noising, which is advantageous for selecting the corresponding detail coefficients for threshold quantization after stationary wavelet transform. Depending on the direction of stripe noise, the corresponding detail coefficients contain stripe noise need to be removed, while retaining the approximate coefficients and ...

متن کامل

Segmentation Improvement of High Resolution Remote Sensing Images based on superpixels using Edge-based SLIC algorithm (E-SLIC)

The segmentation of high resolution remote sensing images is one of the most important analyses that play a significant role in the maximal and exact extraction of information.  There are different types of segmentation methods among which using  superpixels is one of the most important ones. Several methods have been proposed for extracting superpixels. Among the most successful ones, we can r...

متن کامل

Deep Learning Based Oil Palm Tree Detection and Counting for High-Resolution Remote Sensing Images

Oil palm trees are important economic crops in Malaysia and other tropical areas. The number of oil palm trees in a plantation area is important information for predicting the yield of palm oil, monitoring the growing situation of palm trees and maximizing their productivity, etc. In this paper, we propose a deep learning based framework for oil palm tree detection and counting using high-resol...

متن کامل

Stripe noise removal of remote sensing images by total variation regularization and group sparsity constraint

Remote sensing images have been used in many fields, such as urban planning, military, and environment monitoring, but corruption by stripe noise limits its subsequent applications. Most existing stripe noise removal (destriping) methods aim to directly estimate the clear images from the stripe images without considering the intrinsic properties of stripe noise, which causes the image structure...

متن کامل

Farmland Parcels Extraction Based on High Resolution Remote Sensing Images

Extracting farmland parcels from high resolution remote sensing images is an important issue for land-use dynamic monitoring, precision agriculture and other fields. However, the traditional method, using GIS software and manual digital, has wasted a lot of human and material resources. In addition, the results are impacted by the human factors obviously. Therefore, an automatically extraction ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of remote sensing

سال: 2023

ISSN: ['1007-4619', '2095-9494']

DOI: https://doi.org/10.11834/jrs.20221054